
90" N - 0 6 6 3

EFFICIENT UTILIZATION OF GRAPHICS TECHNOLOGY FOR SPACE ANIMATION

Gregory Peter Panos
Lead Engineer, REGIS Lab.

Rockwell International Corporation

Space Transportation Systems Division
simulation and Systems Test Department
REGIS Computer Animation Laboratory
12214 Lakewood Boulevard MC DA-46

Downey, California 90241
(213) 922-0200

ABSTRACT

Efficient utilization of computer graphics technology has become a major

investment in the work of aerospace engineers and mission designers. These new

tools are having a significant impact in the development and analysis of complex

tasks and procedures which must be prepared prior to actual space flight.

Design and implementation of useful methods in applying these tools has evolved

into a complex interaction of hardware, software, network, video and various

user interfaces. Because few people can understand every aspect of this broad

mix of technology, many specialists are required to build, train, maintain and

adapt these tools to changing user needs.

We have set out to create system where an engineering designer can easily work

to achieve their goals with a minimum of technological distraction. We have

accomplished this with high-performance flight simulation visual systems and

supercomputer computational horsepower. Sophisticated but simple to use geometry

generation, translation and modification systems input designer concepts to a

motion design systems after which our visualization and scene rendering tools

are invoked. Control throughout the creative process is judiciously applied

while maintaining generality and ease of use to accomodate a wide variety of

engineering needs.

INTRODUCTION

Planning of space missions has historically been a slow and tedious process.

Drawings and exact measurements were drafted on paper for the various sequences

that had to occur throughout a mission scenario. Launch preparation, mission

operations, return to earth and post-flight ops are analyzed for time-line

schedule conflicts, potential problems, and for detailed failure avoidance.

Within the last decade, CAD systems have become the predominant tools to assist

with mission data design, operational determinations and detailed analysis. 3-D

CAD systems have proved extremely valuable in the areas of 3D design data

storage, distribution, retrieval and modification. Although most mission
information can be processed by traditional CAD systems, there are major gaps in

their ability to rapidly work out "what-if" changes and to easily create video

based presentation materials.

81

Recent Developments

High-performance simulation graphics systems have ushered in a new age of
productivity with tools that allow orders of magnitude increase in performance.
These systems allow an analyst to rapidly prototype changes and evaluate
operational procedures in real-time, while providing videotape recordings of
their results.

The variety of new systems, software tools and fully interconnected networks,
allow complex planning and analysis scenarios to be automated.Theyalso tend to
be virtually self-documenting. Distribution of video-taped presentations to high
level decision makers has rapidly become standard operating procedure for
critical projects that require rapid turn-around.

In our quest to satisfy advancedvisualization needs for hardware design and
operational simulation, we have identified several key areas of concern.

3DObject Data Configuration

Data Compatibility Interfaces

Multi-System Communication

Production System Integration

Production Compatibility

3D OBJECT DATA CONFIGURATION

When working with 3D geometric representations of objects whether they be parts

of a large spacecraft or minute gears and wires, it is very important to know

their position, scale, and orientation. A designer must define an object

hierarchy relative to a global zero point and specify a rotational point for

each moving component, otherwise, no useful motion can be performed. Part colors

and shading type, levels of detail, transparency and texture choices must also

be carried along with object data geometry and topology.

We have constructed a variety of tools which allow a designer to read, status,

break up, combine, delete, add, modify, reorient or otherwise change object

geometry and / or attributes with a series of simple commands.

For example: p2p -ro 90 -45 30 -su i00 -tr i000 i0 -50 < part > newpart

This "p2p" filter will scale file "part" by i00, rotate X by 90, Y by -45 and Z

by 30 degrees, will translate the object to i000, i0, -50 and create a new file

"newpart". These tools allow a designer to avoid manually searching and editing

3D object data files to make changes. Many of these tools can be easily adapted
to menu based windowing environments.

We have found that the more robust a 3D object database structure is, the easier

it is for designers to define important object attributes early on. This reduces

the need to manually add information later. Changes can be made easily, quickly

and effectively when a complete database structure already exists.

82

DATACOMPATIBILITYINTERFACES

Oncea 3Dobject database incorporates all pertinent information, that data must
be made compatible with differing 3D graphics systems and software. Many of
these systems require their own special format for object data and somereqire
more than one file of information to process an image for a single object.
Compatibility can becometime consumingwhenmigrating useful information from
one system to another. To deal with this problem efficiently, a series of tools
have evolved. They are:

Filters : Strip out, add or process numerical information or
object attributes from one input object to another. Filters
usually work on data used by one type of system or software.

Translators : Reformat object data, often in a major way, for use
in different computer display system hardware and rendering
software packageswhich require very specific input formats.

Compressors: Strip out unused information, truncate long numbers,
optimize, encode and combine data in databases to to avoid
redundancy. Archive utilities are specialized compressors.
They are useful in reducing data storage requirements and in
minimizing data transfer time.

Switchers : Substitute one section of data for another, often
geomety, when a boundary condition is reached or some
external flag has been set. These are useful for performing
dynamic "Level Of Detail" changes on display systems. Limited

throughput often degrades performance degrades as level of

detail increases. As an object approaches the viewer, higher

fidelity versions are switched into display system memory

Pixel Encoders : Allow data-rich pixel based images to be reduced

into smaller more compressed files for better storage size.

Color Compressors : Allow images with many colors to be reduced

and averaged down for systems with less capability to process

and display that data. Also reduces file size.

Compositors : Allow a neutral user designated color to act as a

window for another image to show through. A composite image

file of beth images can be saved independently.

Mappers : Allow a designer to define sections of an image to be

used as surface texture maps for wrapping around or pasting

bit-map images onto objects. Often images are scanned in with

a video device to create the images used in texture mapping

applications. This technique can be useful, giving the viewer

the impression greater apparent detail exists on an object's

surface then is contained in its geometry description alone.

Flexible data compatibility tools allow designers to free themselves of the

limitations imposed by different display hardware and / or rendering software.

Virtually any type data can be used anywhere it is needed (with a little help).

83

MULTI-SYSTEM COMMUNICATION

Data transfer and remote system control

Production environments are often complex and interconnected. This imposes many

constraints upon a designer. Passing data between unlike systems can occupy

valuable creative time. Human interaction in performing file transfers and

conversions is unneccesary and inefficient. These tasks should be handled in an

automated fashion. To this end, the following tools have been developed:

Transfer Utilities : Small, command driven tools which allow a

designer to transfer single or multiple files from one place

to another place with a minimum of headaches. These tools can

be highly intelligent. They might check specific system

directories to determine what files are there and which of

them are current so as to retieve or send them.

For example: Getnet Regis DUA0 users.panos DAT 5 /usr/greg/data

_nis command will Get all version 5 .DAT files from the directory users.panos on

disk DUA0 on the Regis system over the network link and it will place them in

the directory/usr/greg/data on the system where the command was evoked.

Control Utilities : Allow a designer to send a series of control

commands from a system port to an external peripheral device

(such as a Videotape Recorder) to do something useful.

For example: Vtr -m 1 -i 6 -b 2000 -r I0 -S -f Regis::Renderer

This command will send a command out to a pre-designated port on the system

where the command was executed. The port is wired to a Videotape Controller and

the command is asking it to select VTR machine number 1 (-m I) and to connect

the incoming video line number 6 to the machine's input (-i 6). The -b 2000

option places the Vtr edit in-point to frame 2000 and allows a i0 frame edit (-r

i0) at that point. The -S option asks the Vtr to go to "Standby" mode after it

is done and the -f option will send a "done flag" to the "Renderer" program
which is running back on the "Regis" system so it may begin another task.

Very often these utilities are highly system and software specific. Many of

these tools contain security passwords, system identification numbers, codes,

data-word sizes, and directory destinations and will allow privledged access

that should be carefully protected.

Production environment developers must determine the safest and most efficient

scheme for inter end intra-system communication and control. Frequent changes to

information embedded within these tools should be avoided. Insured reliability

of use for all users and the programs that serve them should be a top priority.

PRODUCTION SYSTEM INTEGRATION

Production system designers often overlook analog video signal routing problems.

Digital computer display system details and their networks are often closely

studied, while requirements for video signal distribution, propagation and

interfacing are left to last and regarded as the least important aspects of the
system.

84

Video signal needs must be attended to as a primary area of concern for the

production system designer. It is a common fallacy to believe that many desired

effects can be achieved digitally with rendering tricks and additional computer

based techniques. Although this may be true for those who posess intimate

knowledge of these tools, it is much simpler to create a desired effect with the

use of video signal mixing and compositing with multi-track recording, time-base

correction, and encoder function controls. This is the cross-over point where

designers who have concentrated on becoming very proficient programmers become

lost. Video engineers, with their knowledge of RGB, sync, key-channel, matting

and analog calibration often take over at this point. Here are a few examples of

video signal processing options:

_coding : All Frame-buffer and display systems require signal

conversion of their RGB output into a composite video form,

usually NTSC. Encoders perform this conversion and are able

to fine tune and juxtapose certain components of the output

video. For special-effects, calibration, and interfacing to

video switchers, color-keyers and VCRs, encoders are needed.

Keying : Enables one encoded video signal to be superimposed over

a background v_deo signal from a different source. A neutral

color acts as a window on the foreground video signal. This

is a very important feature for any advanced production

system.

Synching : All input and output video signal sources should be

locked to a synchronization clock signal to allow glitch-free

effects. Source switching, dissolving, fading, keying, etc.

all work much better when all systems are "genlocked" to

house sync.

Switching : Multiple video sources can be switched electronically

by computer or with keyboard based control functions in a

good switcher. Different video lines can be re-channeled on

the fly as production needs change and advanced effects like

bordering, split-screen, quad-screen, title insertion, fade,

dissolves, wipes, and highlights can be performed by good

video switcher component which has been properly configured.

Recording : VTR Controls that are properly interfaced to the

production system can be a major benefit to creative usage of

all possible effects. It is a disadvantage for a designer to

have to manually set up and button push a VTR's console to

get it to perform the required actions. Today, most VTRs have

controllers available to enable remote operation. Computers

may also be allowed control of a VTR with multi-tasking.

These options enable a designer to create advanced visual material with the

appropriate interconnection of video component and display system output.

Multiple passes allow for increased scene complexity when using matting and

keying techniques that a computer display alone would not be capable of. Simple

effects like a wipe or page turn. tend to be very time consuming for a digital

computer to perform while a video effects switcher will function in real-time to

accomplish such an effect.

With proper initial configuration of the above video components, a designer will

be able to dynamically set up each scenario by using commands and script based

execution sequences run from the host computer where they are already doing most

of their work. This approach can remove the need to hand wire a video panel,

perform manual VTR edits, or keep a video person around on a full time basis.

85

PRODUCTION COMPATIBILITY

Naming Conventions

In any production environment, there exist many different formats to contend

with. Digital text and binary data files can be extremely varied in their

formats. A program which requires a picture file for display on a computer

frame-buffer may want it's data in ASCII, human readable text, while a CAD

program needs a BINARY compressed geometry file representation as input.

Therefore a good plan for production compatibility becomes essential to assure

continuity and efficiency throughout the creative process. Step one is to think

out a good labeling scheme for the varity of information one needs to deal with.

Good use of terminology for different information types can be essential to

properly understand what takes place in a production script. As a production

evolves and is modified, it can be virtually impossible to keep track of files

and taped sequences for replacement and editing if sensible names are not used.

Disk and tape archiving is greatly simplified with this practice as well. Refer

to Appendix A for details regarding suggested format naming conventions.

Commenting

When program tools modify files of data it is important to add comment lines

describing what has been changed in the data and when changes were made.

For example, here is a geometry file that was processed through our "p2p" filter
to reposition the 3D object data:

I Tue Feb 28 11:41:55 1989

surface Active FlatShaded

v 7 (7 Vertices)
w 256

i00 -1610 980 256

I00 -1610 -1580 256

1910 200 -1580 256

1910 200 980 256

i00 2010 980 256

I00 2010 -1580 256

-1710 200 -1580 256

polyp2p -ro 90 180 -45 -su I0 -tr i00 200 -300
attributes Active FlatShaded

p 5 (5 Polygons)

0 1 2 3 (255 175 o)
4 5 6 0 (255 0 255)

0 6 5 1 (255 255 255)

3 2 5 4 (0 0 255)
3 4 6 0 (255 0 O)

In the above example, the "p2p" filter added the comment line to the top of the

file saying what exactly has been done. In this case the file was rotated by X =

90, Y = 180, Z = -45, scaled up by i0, and translated by i00, 200 -300.

If necessary, all the values in the comment line could be used to convert the

data back to the original unmodified form by negating the numbers and

re-filtering the modified file. This feature can save hours for a designer who

has made a mistake on or deleted by accident a critical file.

Listing

Another good practice is for a designer to build complex objects out of as many

smaller object component files as possible. It is easy to combine them later

with a "concatenate" command or in a script. This allows a great deal of

flexibility when making slight changes, color-coding pieces or when showing only

what is needed to aviod overloading a display generator or renderer.

Using a "Listing" file is the preferred way of specifying many different parts

to be treated as one big part at runtime.

For example, in a Space Shuttle made of 7 major component files, the "Listing"
file would be defined like this:

86

Space Shuttle components

#
Pathname/file Description # of polygons
#

/shuttle/fuselage. P # FUSELAGE p 170

/shuttle/blkhd. P # BULKHEAD p 60

/shuttle/cnopyfwd.P # CANOPY p 80

/shuttle/bay. P # BAY p 50

/shuttle/vrtail.P # VERT. TAIL p 30

/shuttle/wings. P # WINGS p 80

/shuttle/rms.P # rms pieces (4 of them) p 70

When a display program is invoked we would specify the "shuttle. l" file as the

file to display. This would treat all the pieces as one singular object. They

would all move together but each would retain their own attributes such as

color, shading type, transparency level, etc.

Display tools

The "examine" program allows a designer to work with 1 to 4 objects, each with

up to 16 data files. This enables a designer to easily rotate and translate the

view, change the background color and light direction, and to manipulate each

object separately. The program also has a helpful arrow which points at the

light source and a clock hand which rotates once every second to indicate the

display system frame rate for use in overload assessment.

For example: examine -f0 shuttle.l -fl earth.p -f2 gpsl.p -f3 gps2.p

Here we control the shuttle, the earth and two gps satellite models all as

separately moving objects. Each object has independently controllable offset,

rotation, and translation, and is manipulated through separate data tracks.

"Examine" is one of our major workhorse animation programs that we use in our

production environment. It runs on the Poly 2000e computer image generator,

however, its functionality is extensible to virtually any real-time display.

File flipping of 3D object data, where object data varies its geometry from one

frame to the next, is also possible. This feature will allow animated display of

incrementally deformed 3D objects and to rapidly flip through them while

maintaining real-time control of their position and view orientation. However,

one must always watch their polygon count when loading these large amounts of

data into a real-time system. Otherwise, performance may degrade and other

undesirable display artifacts may appear. Refer to Appendix B for the examine

program's options and argument specification.

Rapid Prototype Generation

The last Real-time animation program that I will mention is the "RPG" program or

Rapid Prototype Generator. This "CASE-like" tool was originally conceived by

many different people at different facilities simultaneously (like all great

ideas). RPG is another major tool which helps us to carry the banner for more

efficient and creative production.

The concept is to allow a non-programmer (and hopefully good designer) to

rapidly define, build and animate complex hierarchies of 3D object components.

Without the need for a great deal of complex technical display-system-specific

knowledge, a designer can use RPG to do this in record time.

First an inventory is made of the 3D objects that are to be used. Determination

of what is going to move relative to what (defining the hierarchy) and finding

offset distances and an axis of rotation for each moving part is next.

87

This is done by making a simple moveto the center point (0,0,0) in any simple
display programand then reading the numbersoff the dial box or screen). A text
script is then created by typing in the object hierarchy, offset values, track
assignments and display diagnostic features. This step can take from 5 minutes

to a half hour depending on how well a plan is mapped out and how fast one can

type.

The script is then run through the RPG program "update"on the host system.

Essentially a compiler, "update" generates C source code and compiles it into an

an executable module. Next, a "builder" program is run on the image generator

system where the hierarchy (as described in the RPG script) is assembled and the

3D object modules are loaded into real-time display list memory.

Last, the executable module created by "update" is run on the image generator.

The designer can then use standard channel-based animation package features to

define, save and preview keyframe files.

A detailed description of the statement format and syntax for RPG scripts is

beyond the scope of this paper. We also feel it would be possible to make the

implementation we have chosen even simpler to use. A menu driven script builder

utility with a full graphical interface has been suggested and will be developed

in the near future. Generalized structures in the program will allow differing

real-time displays to utilize the same scripts and 3D object data through the

use of special device driver modules that can be linked to the RPG program.

Refer to Appendix C for an example of a simple RPG program script.

CONCLUS ION

Only through years of experience have we been able to best determine what was

needed to enable efficient production of computer animation and effects. After

many hours of difficult 3D object geometry debugging, we were able to design

flexible and easy to use tools to allow us to do in minutes what used to take

hours. After many days and weeks of writing custom non-reusable C programs for

every animation, we developed "RPG" with which we could produce our working

programs in minutes. Once we created our animation package library we could

generate and save reusable motion data files that took hours to develop by hand.

Motions can be recalled in seconds and used in virtually any animation.

Once things begin to work as efficiently as possible, the greatest burden lies

with the designer to dream up, build and produce the visuals that they desire.

And yet, after countless creative sessions, more efficient ways to facilitate

the creative process always seem to emerge.

ACKNOWLEDGEMENTS

I wish to thank Kenneth M. Stern, my associate in the REGIS Lab. for his fine
contributions and corrections to this material. I would also like to thank Ben

Thompson, STSD Advanced Engineering for additional comments and inspiration.

88

APPENDIXA

Description of suggested namingconvention for different data file types.

Pixel Imagedata file formats:

Image.BIN
Image.RLE
Image.ASC
Image.HAM
Image.IFF
Image.R8
Image.PIX

: An Image file in computer readable BINARY.
: An Image file in "Run Length Encoded"BINARY.
: An Image file in ASCII, humanreadable TEXT.
: An Image file in Amiga "IFF HAMmode"BINARY.
: An Image file in Amiga "IFF" Low, Medor HiRes BINARY.
: An Image file in BINARYRLE for "Cubicomp Picturemaker".

: An Image file in BINARY RLE for Cubicomp Map Mode.

Text data

file.COM

file.LOG

file.POS

file.MAT

file.LGT

file.ENV

file.RPG

file.HDR

file.WFT

file.SCN

file.MMP

file.ENV

file.CM

file.L

file formats:

: A Script file of run-time Commands in TEXT.

: An output file of program runresults in TEXT.

: A "TRACER" hierarchical Scene data/ offset file in TEXT.

: A "TRACER" part Material coefficient data file in TEXT.

: A "TRACER" Light source description file in TEXT.
: An "TRACER" Environment data file in TEXT.

: An RPGhierarchy, offset and control data file in TEXT.

: A "Cubicomp Picturemaker" Header file in TEXT.

: A "Cubicomp Picturemaker" Wireframe test filein TEXT.

: A "Cubicomp Picturemaker" Scene test file in TEXT.

: A "Cubicomp Picturemaker" Color Map file in BINARY.

: A "Cubicomp Picturemaker" Environment file in BINARY.

: A "Cubicomp Picturemaker" Command Macro file in TEXT.

: A List of Geometry files with various components in TEXT.

3D Object

data.GEO :

data.MOV :

data.OBJ :

data.TRI :

data.SPH :

data.DAT :

data.WS :

data.P :

data.p :

Motion data

data .MOT

data. CAM

data. PW

data. K

data. k

Geometry data file formats:

"Aegis Videoscape-3D" Polygon floating-point TEXT.

"MOVIE. BYU" Polygon floating-point TEXT.

"Symbolics S-GEOMetry" polygon floating-point TEXT.

"TRACER" Polygon triangle floating-point TEXT.

"TRACER" Sphere data in floating-point TEXT.

"RI-CDAS" quartic data in floating-point BINARY.

A "Cubicomp Picturemaker" WorkSpace file in BINARY.

"Poly 2000" Polygon 16 bit integer BINARY.

"Poly 2000" Polygon 16 bit integer TEXT.

file formats:

: "Aegis Videoscape-3D" Object motion floating-point TEXT.

: "Aegis Videoscape-3D" Camera motion floating-point TEXT.

: "Cubicomp Picturemaker" keyframe Position Word TEXT file.

: "Animation Package" Multi-Channel 16 bit integer BINARY.

: "Animation Package" Multi-Channel 16 bit integer TEXT.

89

APPENDIXB

Examine program options and arguement specifications.

Flag

-a#m <f>

Meaning Default

animate object # using

mode m once

changing every f frames 1

modes: [a]dd - add files starting at current position

[o]nce - 0 up to n.

[b]ounce - 0 up to n, down to 0, ...

[c]ycle - 0 up to n, 0 up to n, ...

-b <file> filename of background objectn one

-c# # channels # present

-d debug mode false

-f# filename(s) of object # follows

-k keyframe (. K) filename follows default. K

-m light moves with view light is motionless

-r # new rotation sensivity follows 32

-s silent mode (no beeps) when switching files false

-tn # new translate W value for object n follows 256

if n not present, value used for view

-T do not clear or write to text screen write help screen

-v # # # view offset is # # # (x,y,z) 0 0 0
-w # new scale W value follows 256

90

APPENDIXC

Simple RPGtext script for an interlocking gear mechanismanimation.

Interlocking Gear RPGScript

First we Define the Hierarchy

TREE

world : Chan0
i00 i01 102 103 104 105
XYZ.I

box : world
0
box.l

gear0 : box
i0 ii
gear0.1

gearl : box
20 21 22
gearl.l

Next we assign the Offset and Track assignments

MATRICES

trans(i00, val[0][0], val[0][l], val[0][2])

rotx(I01, val[l][0]*32)
roty(102, val[l][l]*32)
rotz(103, vai[i][2]'32)
trans(104, val[2][0], val[2][l], val[2][2]

scaleu(105, val[0][3] + val[l][3] + val[2][3] + 256)

trans(0, val[3][0], val[3][l], val[3][2])
trans(i0, 0, 160, -ii0)
rotz(ii, val[5][0] *32)
trans(20, 0, 40, 0)
roty(21, val[5][0] * (-32) + 4096)
rotx(22, 16384)

Last we Define our Display Diagnostics

leds(0,"0 K0:%6dKl:%6d K2:%6dK3:%6d,,,val[0][0],val[0][l],val[0][2],val[0][3])

EOF

91

